

Structure and Natural Occurrence of Stereoisomers of the Fumonisin B Series Mycotoxins

Wentzel C. A. Gelderblom,^{†,‡} Vikash Sewram,[†] Gordon S. Shephard,[†] Petra W. Snijman,[†] Kenny Tenza,[§] Liana van der Westhuizen,[†] and Robert Vleggaar^{*,§}

Programme on Mycotoxins and Experimental Carcinogenesis, Medical Research Council, P.O. Box 19070, Tygerberg 7505, Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, and Department of Chemistry, University of Pretoria, Pretoria 0002, South Africa

¹H and ¹³C NMR spectroscopy of both fumonisin B₃ and B₄, as well as high-performance liquid chromatography (HPLC) analysis of samples of fumonisin B₃ used as standards, showed in each case the presence of two stereoisomers, which could not be separated by preparative chromatography. The 2,3-*anti* relative configuration for the two minor stereoisomers of fumonisin B₃ and B₄ was deduced from the NMR data, and their 2*S*,3*R* absolute configurations were established by application of Mosher's method using the fumonisin B₃ sample. Samples of fumonisin B₃ and B₄ can contain between 10 and 40% of fumonisin B compounds of the 3-*epi* series. The 3-*epi*-FB₃, determined by HPLC with fluorescence detection of the *o*-phthaldialdehyde derivative and confirmed by liquid chromatography—tandem mass spectrometry, was found to occur naturally in a range of maize samples at levels much lower than FB₃ (<20%). The identification of members of the 3-*epi*-fumonisin B series provides insight into the order and selectivity of steps in fumonisin biosynthesis.

KEYWORDS: Fumonisins; corn; NMR; LC-MS; biosynthesis

INTRODUCTION

The fumonisins of the B series, for example, B_{1-4} (1-4) (see Figure 1), are a family of structurally related mycotoxins first isolated from cultures of Fusarium verticillioides (strain MRC 826) (1, 2). These secondary metabolites are common contaminants of corn throughout the world (3) and the causative agents of equine leucoencephalomalacia (4) and porcine pulmonary edema (5). The carcinogenic nature of these mycotoxins in rodent studies (6, 7), their association with human esophageal cancer (8), and the recent demonstration of their possible role in neural tube defects (9, 10) have heightened international concern over their natural occurrence. The International Agency for Research on Cancer has recently declared FB₁, the most abundant of the fumonisins, to be a group 2B carcinogen (i.e., possibly carcinogenic to humans) (11). Since the initial discovery of FB_1 (1) and FB_2 (2) in 1988, the number of known fumonisin analogues has greatly increased and a recent review of this family of compounds listed 28 members (12). The fumonisins are generally divided into the A, B, C, and P series. The significance of many of these analogues as natural contaminants of food is uncertain, and reports of fumonisin analysis are frequently restricted to FB_1 (1) and FB_2 (2), although some

epi-FB₄ (6) R = H

Figure 1. Chemical structures of the fumonisins.

reports include FB_3 (3). The necessity for including FB_3 in total fumonisin analysis has recently been highlighted by the inclusion

10.1021/jf070061h CCC: \$37.00 © 2007 American Chemical Society Published on Web 05/01/2007

^{*} To whom correspondence should be addressed. Tel: +27 12 420-3095. Fax: +27 12 362-5297. E-mail: robert.vleggaar@up.ac.za.

[†] Medical Research Council.

[‡] University of Stellenbosch.

[§] University of Pretoria.

Figure 2. Chemical structures of FB₃ and 3-epi-FB₃ tetramethyl esters and their MTPA derivatives.

Figure 3. Chemical structures of natural products with the terminal 2-amino-3-hydroxy motif.

of all three analogues in the setting of Food and Drug Administration guidelines for industry in the United States (13) as well as in the provisional maximum tolerable daily intake determined in the recent risk assessment of fumonisins conducted by the Joint FAO/WHO Expert Committee on Food Additives (14).

Analytical standards of FB₁ (1), FB₂ (2), and FB₃ (3) have been prepared by scientists at the MRC, Tygerberg, South Africa, on a commercial basis since the early 1990s. Analysis of fumonisin B₃ samples obtained from different batches of *F. verticillioides* (MRC 826) has recently shown the presence of 10-40% of a stereoisomer of FB₃ that elutes immediately prior to FB₃ in the analytical reversed-phase high-performance liquid chromatography (HPLC) chromatogram of the *o*-phthaldialdehyde (OPA)-derivatized standards. In this paper, we report on the identification and absolute configuration of the stereoisomers 3-epi-FB₃ (5) and 3-epi-FB₄ (6) (Figure 1) present in samples of FB₃ and FB₄, respectively, and the natural occurrence of 3-epi-FB₃ (5).

MATERIALS AND METHODS

HPLC-Tandem Mass Spectrometry (MS-MS) Analyses of Fumonisin Standards. The fumonisin standards (FB1, FB2, FB3, and FB4) were isolated from corn cultures of F. verticillioides as described by the method of Cawood et al. (2). The isolated FB₃ standard and the dried residues of corn sample extracts, prepared as described below for determination by fluorescence detection, were dissolved in acetonitrile-water-formic acid (10:90:0.1). The two stereoisomers of FB₃ were separated by binary gradient reversed-phase HPLC on a Luna C₁₈ column (Phenomenex, Torrance, CA). The individual elution solvents were mixtures of water-acetonitrile-formic acid in the ratios (90:10:0.1; solvent A) and (10:90:0.1; solvent B), respectively. The mobile phase was pumped at a flow rate of 0.7 mL/min. The initial composition of 80% solvent A was adjusted linearly to 75% solvent A over 35 min. The fumonisins were detected by mass spectrometry using a Finnigan MAT (San Jose, CA) LCQ ion trap instrument with positive ion electrospray (ES) ionization. The HPLC eluate was passed directly into the MS at a source voltage of 4.5 kV and a capillary voltage of 40 V. The heated capillary temperature was maintained at 220 °C, and the sheath to auxiliary gas ratio was set at 4:1. Fumonisins were

Table 1. NMR Data for the Normal and 3-epi Series of Fumonisin B_3 and $\mathsf{B}_4{}^a$

		FB ₃ (3)	3- <i>epi-</i> FB ₃ (5)		
atom	δ_{C}	δ_{H}	δ_{C}	δ_{H}	
1	15.61 Q	1.113 d (J 6.7)	12.01 Q	1.054 d (J 6.7)	
2	51.36 D	2.956 qd (J 6.7, 6.8)	50.63 D	3.125 qd (J 6.8, 3.1)	
3	71.08 D	3.336 m	69.65 D	3.568 m	
4	32.90 T		32.46 T		
	FB ₄ (4)		3- <i>epi-</i> FB ₄ (6)		
atom	δ_{C}	δ_{H}	δ_{C}	δ_{H}	
1	15.42 Q	1.120 d (J 6.6)	11.93 Q	1.060 d (J 6.7)	
2	51.23 D	2.957 qd (J 6.7, 6.7)	50.56 D	3.120 qd (J 6.8, 3.1)	
3	70.96 D	3.33 m	69.57 D	3.58 m	
4	32.75 T		32.37 T		

 a Solvent DMSO- $d_{\!6}$. NMR analyses were performed on mixtures of stereoisomers of FB3 and FB4.

Table 2. ¹H NMR Data for the MTPA Amides (δ , CDCL₃)

compound	atom	(<i>S</i>)-MTPA (b)	(<i>R</i>)-MTPA (a)	$\Delta\delta \left(\delta_{\rm S} - \delta_{\rm R} ight)$
9	H(1)	1.110	1.179	-0.069
	H(3) ^a	3.49	3.47	+0.02
10	H(1)	1.025	1.095	-0.070
	H(3) ^a	3.60	3.54	+0.06

^a Chemical shift values obtained from COSY and HETCOR data.

monitored by full-scan MS-MS between m/z 330 and m/z 730. A collision energy of 32% was used to fragment the molecular ions, and the resultant product ions were monitored as diagnostic indicators for the presence of the toxins.

NMR Analysis. NMR spectra were recorded on a Bruker Avance-500DRX spectrometer operating at 500 MHz for ¹H and 125 MHz for ¹³C nuclei using standard Bruker pulse sequences. Spectra acquired for DMSO-*d*₆ solutions were referenced to the signals at $\delta_{\rm H}$ 2.49 and $\delta_{\rm C}$ 39.50 and for spectra in CDCl₃ to the signals at $\delta_{\rm H}$ 7.24 and $\delta_{\rm C}$ 77.00.

Determination of Fumonisin Analoques by HPLC with Fluorescence Detection. Determination of fumonisin analogues in corn was conducted by the method of Sydenham et al. (15). Briefly, corn samples were homogenized in methanol—water (3:1), centrifuged, and filtered. An aliquot of the clear extract was applied to a strong anion exchange solid-phase extraction cartridge (Varian, Harbor City, CA) and washed with methanol, and the fumonisins were eluted with 1% acetic acid in methanol. The purified extracts were dried down under nitrogen at 60 °C. Immediately prior to analysis, the residues were redissolved in methanol and an aliquot was derivatized with OPA. The fumonisin analogues were separated and detected by reversed-phase HPLC (Ultracarb 5 ODS column; Phenomenex) with fluorescence detection (**Figure 4**). The mobile phase was pumped at 1 mL/min and consisted of methanol—sodium dihydrogen phosphate (0.1 M, pH 3.3) (77:23) as generally used for fumonisin determination.

Preparation of the FB₃ Derivatives. *Fumonisin B₃ Tetramethyl Ester.* A solution of FB₃ standard (549 mg) containing a mixture of FB₃ (**3**) and 3-*epi*-FB₃ (**5**) was treated with an excess of a diethyl ether solution of diazomethane (prepared from 4.28 g of Diazald). After 10 min, the excess diazomethane was evaporated in a stream of nitrogen and the residue was dried in vacuo to give the tetramethyl esters **7** and **8** (590 mg, 99%) (**Figure 2**).

Preparation of the Mosher Amide Derivatives. Oxalyl chloride (220 mg. 1.74 mmol) was added to a solution of (R)-(-)-MTPA (e.e. \geq 99%, 82 mg, 0.35 mmol) and dimethyl formamide (DMF) (25.4 mg, 0.35 mmol) in hexane (5 mL) at room temperature. A white precipitate formed immediately. After 60 min, the mixture was passed through a small cotton plug to filter off the formed DMF-Cl. The filtrate was concentrated under reduced pressure to yield the (*S*)-MTPA chloride.

 Table 3. Fumonisin Levels in Samples of Corn and Commercial Corn

 Meal

		fumonisin levels μ g/kg) ^a				
sample	FB_1	FB_2	FB_3	epi-FB ₃	total	% <i>epi</i> /FB ₃
commercial corn meal	380	100	30	2	512	6.7
	625	215	60	5	905	8.3
	240	70	15	2	327	13
	265	80	25	4	374	16
Brazilian corn	1960	720	370	45	3095	12
	4515	255	665	95	5530	14
	3635	900	320	60	4915	19
	2405	1985	400	75	4865	19
Transkei home-grown,	2350	540	200	35	3125	18
good corn	1370	465	120	20	1975	17
•	2980	780	215	45	4020	21
Transkei home-grown,	26240	10070	2490	200	39000	8.1
moldy corn	2665	830	165	25	3685	15
	12480	6860	1740	285	21365	16
	5035	2050	495	75	7655	15
	5365	2025	445	30	7865	6.7

^a FB₄ was not detected.

A solution of the tetramethyl esters **7** and **8** (265 mg, 0.35 mmol), Et₃N (352 mg, 3.48 mmol), and DMAP (5 mg) in CH₂Cl₂ (5 mL) was added to a solution of the (*S*)-MTPA chloride in CH₂Cl₂ (2 mL) solution. The mixture was stirred for 30 min and then quenched by addition of water (2 mL). The organic solution was washed with 0.5 M HCl, followed by saturated NaHCO₃ solution and water. The CH₂-Cl₂ solution was dried (Na₂SO₄), filtered, and evaporated. The product was purified by column chromatography on silica gel with EtOAc– hexane (3:2) as the eluent to give the (*R*)-Mosher amide derivative (180 mg, 59%), an oil, as a mixture of two diastereomers (**9a** and **10a**) (d.r. 82:18); *R*_f 0.34.

The same protocol was followed but using (*S*)-(+)-MTPA (e.e. \geq 99%), to convert a sample of the tetramethyl esters **7** and **8** (265 mg, 0.34 mmol) to a mixture of the two diastereomeric (*S*)-Mosher amide derivatives (**9b** and **10b**) (214 mg, 63%) (d.r. 82:18) (**Figure 2**).

RESULTS AND DISCUSSION

The terminal 2-amino-3-hydroxy motif of the fumonisin C_{20} backbone is also present in a number of marine natural products (see Figure 3). In 1989, Gulavita and Scheuer (16) isolated two epimeric aliphatic amino alcohols from a Papua New Guinea sponge, Xestospongia sp., and proposed their structures as (2S,3S,5E,7E)- and (2S,3R,5E,7E)-2-aminotetradeca-5,7-dien-3-ol, ent-(11) and ent-(12), respectively. The relative stereochemistry followed from nuclear Overhauser effect studies on the oxazolidinone derivative and the absolute configuration at C(2) by degradation of the diacetyl derivatives to alanine and HPLC analysis of the derivative formed with 1-fluoro-2,4dinitrophen-5-yl-(2S)-alanine amide. Mori and Matsuda (17) reported the total synthesis of both enantiomers of 11 and 12 and assigned the enantiomeric stereochemistry to the natural products isolated by Gulavita and Scheuer (16), since the 2Rstereoisomers showed the same sign of optical rotation as the natural products. The stereochemistry of the xestoaminols A (13), B (14), and C (15) isolated by Jiménez and Crews (18) from two different sponges of the genus Xestospongia was determined by Garrido et al. (19) in their study on the obscuraminols, for example, obscuraminol C (16) obtained from the tunicate Pseudodistoma obscurum. Sata and Fusetani (20) isolated two new cytotoxic stereoisomeric 2,3-amino alcohols, amaminol A (17) and B (18), from an unidentified tunicate of the family Polyclinidae. The stereochemical relationship between these two compounds, as in the case of the amino alcohols 11 and 12 isolated by Gulavita and Scheuer (16), is of particular

Figure 4. HPLC chromatogram with fluorescence detection of the OPA derivatives of the isolated FB₃ standard showing the relative areas of the two stereoisomers.

significance to the structure elucidation of the minor metabolites of the fumonisins. A detailed analysis of the ¹H NMR spectra of 17 and 18 disclosed that the relative stereochemistry of the C(2) and C(3) stereogenic centers differed as indicated by the coupling constant between H(2) and H(3) $[J_{2,3} 3.1 \text{ Hz for } (17)$ vs 7.3 Hz for (18)]. The Mosher ester analysis (21-23) indicated that the two compounds had the same 3S absolute configuration and were epimeric at C(2). This is in direct contrast to the results obtained by Gulavita and Scheuer (16) on the amino alcohols 11 and 12, which are C(3) epimers. The absolute configuration of the crucigasterins 19-21, isolated by Jarez et al. (24) from a Mediterranean tunicate Pseudodistoma crucigaster, was assigned by chemical degradation to (3S,4R)-3-hydroxy-4-aminopentanoic acid. The anti stereochemistry of the 2-amino-3hydroxy group of the crucigasterins is reflected by the 3.0 Hz coupling constant for the C(2) and C(3) protons. Analysis of the ${}^{13}C$ NMR data reported by Gulavita and Scheuer (16) and Mori and Matsuda (17) in the work on the amino alcohols 11 and 12 and by Sata and Fusitani (20) on the amaminols 17 and 18 showed characteristic chemical shift values for the methyl group of the syn- and anti-2,3-amino alcohols. Thus, the methyl group, C(1), in the diacetyl derivative of **11** appeared at $\delta_{\rm C}$ 18.49 (syn) whereas in the diacetyl derivative of 12 it appeared at $\delta_{\rm C}$ 14.93 (anti). The same trend is observed for the amaminols: $\delta_{\rm C}$ 16.0 for the syn compound (11) and $\delta_{\rm C}$ 12.1 for the anti compound (12). The anti-amino alcohol (22) (25) showed the methyl groups at $\delta_{\rm C}$ 12.1 and 11.9, whereas in the syn-amino alcohols such as fumonisin B_3 (3) and B_4 (4) the methyl group appears at $\delta_{\rm C}$ 15.61 and 15.42. It is thus evident that the ¹³C chemical shift values for the methyl group, C(1), define the relative stereochemistry of the 2,3-amino alcohol moiety in these compounds.

Fast atom bombardment and ES mass spectrometry of FB₃ samples, which exhibited two peaks in the HPLC analysis, showed the $[M + H]^+$ ion at 706 and established the molecular formula C₃₄H₅₉NO₁₄ for each of the two compounds. The ¹H and ¹³C NMR spectra showed in all cases the presence of a minor component 3-epi-FB₃ (5). The use of two-dimensional correlation spectroscopy (COSY) and heteronuclear correlation (HETCOR) experiments established that the discernible signals of the minor component in the ¹H and ¹³C spectra represent the C(1)-C(4) unit of the backbone. The coupling constant of 6.8 Hz between the C(2) and the C(3) protons of FB₃ is characteristic of the syn-2,3-amino alcohol in these metabolites. The anti stereochemistry for the 2,3-amino alcohol unit of the minor metabolite 3-epi-FB₃ (5) followed from the 3.1 Hz coupling observed for the C(2) and C(3) protons (**Table 1**). The ${}^{13}C$ chemical shifts for the methyl group in fumonisin B_3 (δ_C

Figure 5. Biosynthetic formation of the fumonisins and the 3-epi stereoisomers.

15.61Q) and the minor component 3-*epi*-FB₃ (5) ($\delta_{\rm C}$ 12.01Q) confirmed the *anti*-2,3 stereochemistry of the latter.

The ¹H and ¹³C NMR spectra of samples of fumonisin B₄ (**4**) isolated over the years sometimes also showed the presence of up to 40% of a minor metabolite 3-*epi*-FB₄ (**6**) with the 2,3-*anti* stereochemistry (**Table 1**). The *anti* stereochemistry of 3-*epi*-FB₄ (**6**) followed once again from the coupling constant of 3.1 Hz for the C(2) and C(3) protons and the ¹³C chemical shift value of 11.93 for the methyl group, C(1) (see **Table 1**). In contrast, the ¹H and ¹³C NMR spectra of samples of FB₁ (**1**) and FB₂ (**2**) prepared by us have always lacked the signals for the corresponding 3-*epi* stereoisomers with the *anti*-2,3 stereo-chemistry.

The absolute configuration of the C(2) and C(3) stereogenic centers of FB₁₋₄ has been established as (2S,3S) (26-32), and consequently, the minor metabolites 3-*epi*-FB₃ (**5**) and 3-*epi*-FB₄ (**6**) must either have the (2S,3R) or (2R,3S) configuration. The C(2) absolute configuration for the FB₃ minor metabolite, 3-*epi*-FB₃ (**5**), was determined using Mosher methodology (21-23). A sample of FB₃ (**3**) [containing 18% of the minor metabolite 3-*epi*-FB₃ (**5**)] was converted to the tetramethyl ester derivatives **7** and **8** (minor) by treatment with an excess of diazomethane. The amino group was then converted to the (*R*)- and (*S*)-MTPA amides (**7a,b** and **8a,b**) (minor), respectively, by reaction with the (*S*)- and (*R*)-MTPA chlorides [prepared from the (*R*)- and (*S*)-MTPA and Rhee (*33*)]. The $\Delta\delta$ ($\delta_S - \delta_R$) values observed for H(1) (-0.069 ppm) and H(3) (+0.02)

Figure 6. Total ion chromatogram of a Transkeian moldy corn sample and mass spectra of the protonated FB₃ and 3-epi-FB₃ analogues.

ppm) of the Mosher amide derivatives (9) (see **Table 2**) are in agreement with the 2*S* absolute configuration of the fumonisins. The fact that similar values are observed for the corresponding protons of the Mosher amide derivatives (10) implies that the minor metabolite 3-*epi*-FB₃ (5) present in samples of FB₃ (3) also has the 2*S* absolute configuration and therefore on the basis of its 2,3-*anti* relative stereochemistry, the 3*R* absolute configuration. As a consequence of this result, the assignment of the 2*S*,3*R* absolute configuration to the minor metabolite 3-*epi*-FB₄ (6) present in samples of fumonisin B₄ (4) is reasonable.

Biosynthetic studies on the fumonisins using $[1^{-13}C]$ -, $[2^{-13}C]$ -, and [1,2-13C2]acetate, [methyl-13C]-(2S)-methionine, and [3-13C]-(2S)-alanine precursors established that C(3)-C(20) are derived from acetate and C(1), C(2), and the 2-NH₂ group are derived from alanine. The C(12) and C(16) methyl groups are derived from methionine (34-38). An acetate-derived carbonyl group is the source of the C(3) hydroxyl group, whereas the C(5), C(10), C(14), and C(15) hydroxyl groups are likely derived from molecular oxygen (39). The citric acid cycle is believed to be the source of the tricarballylic acid moiety (37). Recently, a 15-gene cluster (FUM1-FUM3, FUM6-FUM8, FUM10, FUM11, and FUM13-FUM19) required for the biosynthesis of the fumonisins in F. verticilloides was cloned and characterized (40-42). The data obtained from direct studies of these biosynthetic genes by genetic and biochemical approaches (40-48) provided the basis for a biosynthetic pathway (46-48). The biosynthesis starts with the formation of a dimethylated, saturated C₁₈ polyketide chain catalyzed by the Fum1p polyketide synthase (see Figure 5) The carbon-carbon bond formation between the (2S)-alanine and the enzyme-bound C₁₈ polyketide chain by the pyridoxal-phosphate-dependent aminoacyl transferase enzyme Fum8p, encoded by the FUM8 gene (42, 43), involves the loss of CO_2 to form the 3-keto intermediate (23) with overall retention of the C(2) configuration. Stereospecific reduction of the 3-keto intermediate at the ReS face of the carbonyl group by ketoreductase Fum13p results in the formation of the 3S hydroxyl group and the syn-2,3 amino alcohol motif (24) (43, 45, 47). This reduction is analogous to that of 3-ketosphinganine to sphinganine (43) except that the reduction of the carbonyl group with 3-ketosphinganine reductase must occur at the Si face to generate the 3R hydroxyl group and the *anti*-2,3 amino alcohol of sphinganine.

The formation of 3-*epi*-FB₃ (**5**) with its 3*R* hydroxyl group and thus the 2,3-*anti* stereochemistry is postulated to occur by reduction at the *SiS* face of the carbonyl group of the 3-keto intermediate (**23**) to give the intermediate (**25**) in the fumonisin biosynthesis by a 3-ketosphinganine type reductase. The presence of such a 3-ketosphinganine type reductase has been proposed to account for the low levels of FB₁₋₄ production in *FUM13* deletion mutants (*43*).

Evidence has been presented that the reduction of the 3-keto group is an early step in the biosynthetic pathway, whereas the introduction of the C(5) hydroxyl group by a 2-ketoglutaratedependent dioxygenase Fum3p, encoded by the *FUM3* gene, is the last step (43, 47, 48). On the basis of this proposed biosynthetic pathway, the presence of 3-epi-FB₃ (5) and 3-epi-FB₄ (6) should lead to the formation of the 3-epi stereoisomers of FB₁ and FB₂ by the Fum3p enzyme. This is not the case as these 3-epi stereoisomers of FB₁ and FB₂ have never been detected by us. This failure of Fum3p to convert 3-epi-FB₃ (5) and 3-epi-FB₄ (6) to 3-epi-FB₁ and 3-epi-FB₂, respectively, suggests that the metabolites with the 3*R* hydroxyl group, that is, the 2,3-anti stereochemistry, are not recognized by Fum3p and thus do not serve as substrates.

The newly described 3-*epi*-FB₃ (**5**) was identified from the FB₃ standard isolated in the PROMEC Unit from various batches of corn patty culture material prepared from *F. verticillioides* MRC 826. In an attempt to avoid the presence of this analogue in the analytical standard, a range of other *F. verticillioides* strains, including MRC 8041 that only produces FB₃, have been cultured. The 3-*epi*-FB₃ (**5**) has been found to occur in all of these at levels ranging from 21 to 42% of the level of the normal FB₃. In a limited comparison, two strains grown in liquid medium showed lower levels (around 7–8%) of the *epi* stereoisomer. Of greater concern is the potential natural occurrence of this new fumonisin analogue. A range of corn samples from various sources have recently been analyzed by HPLC with fluorescence detection. 3-*epi*-FB₃ (**5**) was identified by its

retention time as a small peak eluting from the HPLC column immediately prior to normal FB₃. Table 3 shows the results of the analytical determination of FB_3 (3) and 3-epi-FB₃ (5) for 16 samples of corn and commercial corn meal. The presence of the stereoisomer was confirmed by LC-MS-MS analysis and the presence of the characteristic fragmentation pattern for fumonisins. Figure 6 shows the total ion chromatogram for a sample of Transkeian corn, as well as a comparison of the mass spectra for FB₃ (3) and for the peak corresponding to 3-epi- FB_3 (5). The similarity of the spectra and the presence of the fragment ions corresponding to $[M + H - H_2O]^+$ (m/z 688), $[M + H - 2H_2O]^+$ (*m*/*z* 670), $[M + H - TCA]^+$ (*m*/*z* 530), $[M + H - H_2O - TCA]^+$ (m/z 512), $[M + H - 2TCA]^+$ (m/z 354), and $[M + H - H_2O - 2TCA]^+$ (*m*/*z* 336) provides unequivocal identification of the compounds. The level of 3-epi- FB_3 (5) in these samples ranged from 6.7 to 21% of the level of FB₃ and contributed only marginally to the total level of fumonisins. On the basis of these data and the fact that it also only occurs at lower levels than FB₃ in culture, it can be concluded that, in general, the influence of 3-epi-FB₃ on fumonisin exposure will be small.

The use of an isolated FB₃ analytical standard for chromatographic analysis is problematic due to the presence of the two stereoisomers. Nevertheless, because of their chemical similarity and similar retention times on a reversed-phase HPLC column, the assumption of the same chromatographic response factors for the two isomers would appear to be reasonable and allows accurate analysis to be performed. The response factor calculated for the combination of the two isomers in the standard chromatogram is then applied separately to each isomer peak in the chromatogram of the sample.

LITERATURE CITED

- Bezuidenhout, S. C.; Gelderblom, W. C. A.; Gorst-Allman, C. P.; Horak, R. M.; Marasas, W. F. O.; Spiteller, G.; Vleggaar, R. Structure elucidation of the fumonisins, mycotoxins from *Fusarium moniliforme. J. Chem. Soc., Chem. Commun.* 1988, 743–745.
- (2) Cawood, M. E.; Gelderblom, W. C. A.; Vleggaar, R.; Behrend, Y.; Thiel, P. G.; Marasas, W. F. O. Isolation of the fumonisin mycotoxins: A quantitative approach. *J. Agric. Food Chem.* **1991**, *39*, 1958–1962.
- (3) Shephard, G. S.; Thiel, P. G.; Stockenström, S.; Sydenham, E. W. Worldwide survey of fumonisin contamination of corn and corn-based products. J. AOAC Int. 1996, 79, 671– 687.
- (4) Kellerman, T. S.; Marasas, W. F. O.; Thiel, P. G.; Gelderblom, W. C. A.; Cawood, M.; Coetzer, J. A. W. Leukoencephalomalacia in two horses induced by oral dosing of fumonisin B₁. *Onderstepoort J. Vet. Res.* **1990**, *57*, 269–275.
- (5) Harrison, L. R.; Colvin, B. M.; Green, J. T.; Newman, L. E.; Cole, J. R. Pulmonary edema and hydrothorax in swine produced by fumonisin B₁, a toxic metabolite of *Fusarium moniliforme*. J. Vet. Diagn. Invest. **1990**, 2, 217-221.
- (6) Gelderblom, W. C. A.; Kriek, N. P. J.; Marasas, W. F. O.; Thiel, P. G. Toxicity and carcinogenicity of the *Fusarium moniliforme* metabolite, fumonisin B₁, in rats. *Carcinogenesis* **1991**, *12*, 1247–1251.
- (7) Howard, P. C.; Eppley, R. M.; Stack, M. E.; Warbritton, A.; Voss, K. A.; Lorentzen, R. J.; Kovach, R. M.; Bucci, T. J. Fumonisin B₁ carcinogenicity in a two-year feeding study using F344 rats and B6C3F₁ mice. *Environ. Health Perspect.* 2001, 109, 277–282.
- (8) Rheeder, J. P.; Marasas, W. F. O.; Thiel, P. G.; Sydenham, E. W.; Shephard, G. S.; Van Schalkwyk, D. J. Fusarium moniforme

and fumonisins in corn in relation to human esophageal cancer in Transkei. *Phytopathology* **1992**, *82*, 353–357.

- (9) Sadler, T. W.; Merrill, A. H.; Stevens, V. L.; Sullards, M. C.; Wang, E.; Wang, P. Prevention of fumonisin B₁-induced neural tube defects by folic acid. *Teratology* **2002**, *66*, 169–176.
- (10) Hendricks, K. Fumonisins and neural tube defects in south Texas. *Epidemiology* **1999**, *10*, 198–200.
- (11) International Agency for Research on Cancer. Fumonisin B₁. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Some Traditional Medicines, Some Mycotoxins, Naphthalene and Styrene; IARC: Lyon, France, 2002; Vol. 82, pp 301–366.
- (12) Rheeder, J. P.; Marasas, W. F. O.; Vismer, H. F. Production of fumonisin analogs by *Fusarium* species. *Appl. Environ. Microbiol.* 2002, 68, 2101–2105.
- (13) Food and Drug Administration, 2000; http://vm.cfsan.fda.gov/ %7Edms/fumongui.html.
- (14) World Health Organization. Evaluation of Certain Mycotoxins in Food; WHO Technical Report Series 906; 56th Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO: Geneva, Switzerland, 2002.
- (15) Sydenham, E. W.; Shephard, G. S.; Thiel, P. G.; Stockenström, S.; Snijman, P. W.; van Schalkwyk, D. J. Liquid chromatographic determination of fumonisins B₁, B₂, and B₃ in corn: AOAC-IUPAC collaborative study. *J. AOAC Int.* **1996**, *79*, 688– 696.
- (16) Gulavita, N. K.; Scheuer, P. J. Two epimeric aliphatic amino alcohols from a sponge, *Xestospongia* sp. J. Org. Chem. **1989**, 54, 366–389.
- (17) Mori, K.; Matsuda, H. Synthesis of sphingosine relatives. XII. Synthesis and absolute configuration of the two epimeric aliphatic amino alcohols [(5E,7E)-2-amino-5,7-tetra-decadien-3-ols] isolated from a sponge, *Xestospongia* sp. *Liebigs Ann. Chem.* 1992, 131–137.
- (18) Jiménez, C.; Crews, P. Novel marine sponge amino acids, 10. Xestoaminols from *Xestospongia* sp. J. Nat. Prod. **1990**, 53, 978–982.
- (19) Garrido, L.; Zubía, E.; Ortega, M. J.; Naranjo, S.; Salvá, J. Obscuraminols, new unsaturated amino alcohols from the tunicate *Pseudodistoma obscurum*: Structure and absolute configuration. *Tetrahedron* **2001**, *57*, 4579–4588.
- (20) Sata, N. U.; Fusetani, N. Amaminols A and B, new bicyclic amino alcohols from an unidentified tunicate of the family Polyclinidae. *Tetrahedron Lett.* **2000**, *41*, 489–492.
- (21) Dale, J. A.; Mosher, H. S. Nuclear magnetic resonance enantiomer reagents. Configurational correlations *via* nuclear magnetic resonance chemical shifts of diastereomeric mandelate, *O*methylmandelate, and α-methoxy-α-trifluoromethylphenylacetate (MTPA) esters. *J. Am. Chem. Soc.* **1973**, *95*, 512–519.
- (22) Sullivan, G. R.; Dale, J. A.; Mosher, H. S. Correlation of configuration and ¹⁹F chemical shifts of α-methoxy-α-trifluoromethylphenylacetate derivatives. *J. Org. Chem.* **1973**, *38*, 2143–2147.
- (23) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. High-field FT NMR application of Mosher's method. The absolute configurations of marine terpenoids. *J. Am. Chem. Soc.* **1991**, *113*, 4092–4096.
- (24) Jares-Erijman, E. A.; Bapat, C. P.; Lithgow-Bertolloni, A.; Rinehart, K. L.; Sakai, R. Crucigasterins, new polyunsaturated amino alcohols from the Mediterranean tunicate *Pseudodistoma crucigaster. J. Org. Chem.* **1993**, *58*, 5732–5737.
- (25) Kong, F., Faulkner, D. J. Leuettamols A and B, two antimicrobial lipids from the calcareous sponge *Leucetta microraphis. J. Org. Chem.* **1993**, 58, 970–971.
- (26) Boer, A. Stereochemical studies on the fumonisins, metabolites of *Fusarium moniliforme*, M.Sc. Dissertation, University of Pretoria, 1992.
- (27) ApSimon, J. W.; Blackwell, B. A.; Edwards, O. E.; Fruchier, A. Relative configuration of the C-1 to C-5 fragment of fumonisin B₁. *Tetrahedron Lett.* **1994**, *35*, 7703–7706.

- (28) Poch, G. K.; Powell, R. G.; Plattner, R. D.; Weisleder, D. Relative stereochemistry of fumonisin B₁ at C-2 and C-3. *Tetrahedron Lett.* **1994**, *35*, 7707–7710.
- (29) Blackwell, B. A.; Edwards, O. E.; ApSimon, J. W.; Fruchier, A. Relative configuration of the C-10 to C-16 fragment of fumonisin B₁. *Tetrahedron Lett.* **1995**, *36*, 1973–1976.
- (30) Hoye, T. R.; Jiménez, J. I.; Shier, W. T. Relative and absolute configuration of the fumonisin B₁ backbone. *J. Am. Chem. Soc.* **1994**, *116*, 9409–9410.
- (31) Harmange, J.-C.; Boyle, C. D.; Kishi, Y. Relative and absolute stereochemistry of the fumonisin B₂ backbone. *Tetrahedron Lett.* **1994**, *35*, 6819–6822.
- (32) Hartl, M.; Humpf, H.-U. Assigning the absolute configuration of fumonisins by the circular dichroism exciton chirality method. *Tetrahedron: Asymmetry* **1998**, *9*, 1549–1556.
- (33) Ward, D. E.; Rhee, C. K. A simple method for the microscale preparation of Mosher's acid chloride. *Tetrahedron Lett.* 1991, 32, 7165–7166.
- (34) Alberts, J. F.; Gelderblom, W. C. A.; Vleggaar, R.; Marasas, W. F. O.; Rheeder, J. P. Production of [¹⁴C]fumonisin B₁ by *Fusarium moniliforme* MRC 826 in corn cultures. *Appl. Environ. Microbiol.* **1993**, *59*, 2673–2677.
- (35) Branham, B. E.; Plattner, R. D. Alanine is a precursor in the biosynthesis of fumonisin B₁ by *Fusarium moniliforme*. *Mycopathologia* **1993**, *124*, 99–104.
- (36) Blackwell, B. A.; Miller, J. D.; Savard, M. E. Production of carbon-14 labelled fumonisin in liquid culture. J. AOAC Int. 1994, 77, 506–511.
- (37) Blackwell, B. A.; Edwards, O. E.; Fruchier, A.; ApSimon, J. W.; Miller, J. D. NMR structural studies of fumonisin B₁ and related compounds from *Fusarium moniliforme*. *Adv. Exp. Med. Biol.* **1996**, *392*, 75–91.
- (38) Plattner, R. D.; Shackleford, D. D. Biosynthesis of labeled fumonisins in liquid cultures of *Fusarium moniliforme*. *Mycologia* **1992**, *117*, 17–22.
- (39) Caldas, E. D.; Sadilkova, K.; Ward, B. L.; Jones, A. D.; Winter, C. K.; Gilchrist, D. G. Biosynthetic studies of fumonisin B1 and AAL toxins. J. Agric. Food Chem. 1998, 46, 4734–4743.
- (40) Proctor, R. H.; Desjardins, A. E.; Plattner, R. D.; Hohn, T. M. A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in *Gibberella fujikuroi* mating population A. *Fungal Genet. Biol.* **1999**, *27*, 100–112.

- (41) Proctor, R. D.; Brown, D. W.; Plattner, R. D.; Desjardins, A. E. Co-expression of 15 contigous genes delineates a fumonisin biosynthetic gene cluster in *Gibberella moniliformis*. *Fungal Genet. Biol.* **2003**, *38*, 237–249.
- (42) Seo, J. A.; Proctor, R. H.; Plattner, R. D. Characterization of four clustered and coregulated genes associated with fumonisin biosynthesis in *Fusarium verticillioides*. *Fungal Genet. Biol.* 2001, *34*, 155–165.
- (43) Butchko, R. A.; Plattner, R. D.; Proctor, R. H. Fum13 encodes a short chain dehydrogenase/reductase required for C-3 carbonyl reduction during fumonisin biosynthesis in *Gibberella moniliformis. J. Agric. Food Chem.* **2003**, *51*, 3000– 3006.
- (44) Butchko, R. A.; Plattner, R. D.; Proctor, R. H. FUM9 is required for C-5 hydroxylation of fumonisins and complements the mitotically defined Fum3 locus in Gibberella moniliformis. Appl. Environ. Microbiol. 2003, 69, 6935–6937.
- (45) Ding, Y.; Bojja, R. S.; Du, L. Fum3p is a 2-ketoglutarate dependent dioxygenase required for C-5 hydroxylation of fumonisins in *Fusarium verticillioides*. *Appl. Environ. Microbiol.* 2004, 70, 1931–1934.
- (46) Bojja, R. S.; Cerny, R. L.; Proctor, R. H.; Du, L. Determining the biosynthetic sequence in the early steps of the fumonisin pathway by use of three gene-disruption mutants of *Fusarium verticillioides. J. Agric. Food Chem.* **2004**, *52*, 2855–2860.
- (47) Yi, H.; Bojja, R. S.; Fu, J.; Du, L. Direct evidence for the function of *FUM13* in 3-ketoreduction of mycotoxin fumonisins in *Fusarium verticillioides*. J. Agric. Food Chem. **2005**, 53, 5456– 5460.
- (48) Butchko, R. A.; Plattner, R. D.; Proctor, R. H. Deletion analysis of *FUM* genes involved in tricarballylic ester formation during fumonisin biosynthesis. *J. Agric. Food Chem.* **2006**, *54*, 9398– 9404.

Received for review January 9, 2007. Revised manuscript received March 22, 2007. Accepted March 22, 2007. Financial support from the University of Pretoria and the National Research Foundation, Pretoria, as well as the Wellcome Trust toward the purchase of the LC-MS system is gratefully acknowledged.

JF070061H